
STRASSEN’S ALGORITHM

MAXFIELD MA

1. Introduction

We currently live in a world full of data and to be able to use this data we
must be able to analyze it. Matrices are a great way to store vast amounts
of information neatly and concisely. Being able to perform operations on
our data set allows us to manipulate and extract components we want to
analyze. One of the most basic operations on matrices, matrix multiplication,
is simple to perform but time consuming. Multiplying two n × n matrices
requires a total of n3 scalar multiplications and n3 − n2 scalar additions
making the standard method of matrix multiplication have a time complexity
of O(n3). As data sets only continue to grow in size, the time complexity
starts to become a bottleneck to many algorithms. In 1969, Volker Strassen
published a paper that demonstrated an innovative way to perform square
matrix multiplication in O(n2.81) time [2]. Over the years, his method and
this area of research have continued to advance allowing us to perform faster
matrix multiplication [1].

This paper takes an in depth look at the first of these algorithms, Strassen’s
Algorithm. The goal is to prove why this method of square matrix multi-
plication provides the correct result and why its runtime is faster than the
standard method.

2. Strassen’s Algorithm [1]

2.1. Implementation to 2k × 2k matrices. Strassen’s Algorithm can only
be directly applied to n× n matrices where n is a power of 2. There exists a
fix for other n that we discuss later 2.2.

Let’s start with the case n = 2. Let A, B, and C be 2×2 matrices defined
by: (

c11 c12
c21 c22

)
=

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
.

Date: 2025-11-10.

1



2 MAXFIELD MA

We first compute the follow values:

x1 = (a11 + a22)(b11 + b22)

x2 = (a21 + a22)b11

x3 = a11(b12 − b22)

x4 = a22(−b11 + b21)

x5 = (a11 + a12)b22

x6 = (−a11 + a21)(b11 + b12)

x7 = (a12 − a22)(b21 + b22).

Notice that we only perform 7 scalar multiplications. Using these values, we
can compute matrix C as follows (3.3 provides a proof):(

c11 c12
c21 c22

)
=

(
x1 + x4 − x5 + x7 x3 + x5

x2 + x4 x1 + x3 − x2 + x6

)
.

Example 2.1. Let A =

(
1 2
3 4

)
and B =

(
5 6
7 8

)
. We can use this method

to compute AB.

x1 = (1 + 4)(5 + 8) = 65

x2 = (3 + 4)5 = 35

x3 = 1(6− 8) = −2

x4 = 4(−5 + 7) = 8

x5 = (1 + 2)8 = 24

x6 = (−1 + 3)(5 + 6) = 22

x7 = (2− 4)(7 + 8) = −30.(
c11 c12
c21 c22

)
=

(
65 + 8− 24− 30 −2 + 24

35 + 8 65− 2− 35 + 22

)
=

(
19 22
43 50

)
One can quickly verify that this does provide the correct answer.

This algorithm can be generalized to larger matrices through recursion.
Notice that each of our entries in C were obtained through addition and
multiplication where we did not need to use the fact that scalar multiplication
is commutative. Thus, Strassen’s algorithm works over rings which means
our entries of B and C, (aij , bij), could also be matrices. Consider 4 × 4
matrices X, Y , and Z such that Z = XY . Let us denote the entries of X,
Y , and Z in block form:

Z =

(
Z11 Z12

Z21 Z22

)
, X =

(
X11 X12

X21 X22

)
, Y =

(
Y11 Y12
Y21 Y22

)



STRASSEN’S ALGORITHM 3

The entries Zij , Xij , and Yij are themselves 2×2 matrices. Using matrix ad-
dition and matrix multiplication (2×2 matrix multiplication using Strassen’s
algorithm), we can compute values x1−7 and therefore the entries of Z.

2.2. Padding. Since Strassen’s algorithm provides both a correct procedure
for multiplying 2× 2 matrices and a recursive method for multiplying larger
matrices, it follows that the algorithm applies directly to all n × n matrices
where n is a power of two. To apply the method to arbitrary dimensions
n ∈ Z+, we can pad the input matrices with rows and columns of zeros
until their size reaches the next power of two. This padding step does not
change the value of the final matrix product, and the additional zero rows
and columns can be removed after the computation. For example, below is
the 3× 3 matrix A padding to 4× 4 matrix Â:

A =

1 1 1
1 1 1
1 1 1

 → Â =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

 .

3. Analysis of Strassen’s Algorithm

3.1. Correctness of Strassen’s Algorithm. My proof of the correctness
of Strassen’s Algorithm.

Proposition 3.1 (Block Addition). Given n×n matrices A, B, and C such

that C = A+B, then

(
C 0
0 0

)
=

(
A 0
0 0

)
+

(
B 0
0 0

)
also holds.

Proof. Let A′, B′, and C ′ be our augmented matrices, where

A′ =

(
A 0
0 0

)
, B′ =

(
B 0
0 0

)
, C ′ =

(
C 0
0 0

)
.

Note that A′, B′, and C ′ are (n+ 1)× (n+ 1) matrices. We claim that

C ′ = A′ +B′.

For 1 ≤ i, j ≤ n+ 1, matrix addition is entrywise, so

(A′ +B′)ij = A′
ij +B′

ij .

If 1 ≤ i, j ≤ n, then by construction A′
ij = Aij and B′

ij = Bij , hence

(A′ +B′)ij = Aij +Bij = Cij = C ′
ij .

If i = n + 1 or j = n + 1, then A′
ij = 0 and B′

ij = 0 (since the last row and

last column of each augmented matrix are zero), so

(A′ +B′)ij = 0 = C ′
ij .



4 MAXFIELD MA

Therefore (A′ +B′)ij = C ′
ij for all 1 ≤ i, j ≤ n+ 1, which implies(

C 0
0 0

)
=

(
A 0
0 0

)
+

(
B 0
0 0

)
.

□

Proposition 3.2 (Block Multiplication). Given n × n matrices A, B, and

C such that C = AB, then

(
C 0
0 0

)
=

(
A 0
0 0

)(
B 0
0 0

)
also holds.

Proof. Let A′, B′, and C ′ be our augmented matrices. Note that A′, B′, and
C ′ are (n+1)× (n+1) matrices. For 1 ≤ i, j ≤ n+1, the product C ′ = A′B′

satisfies

C ′
ij =

n+1∑
k=1

A′
ik B

′
kj .

If 1 ≤ i, j ≤ n, then A′
ik = Aik and B′

kj = Bkj for 1 ≤ k ≤ n, and A′
ik =

B′
kj = 0 otherwise. Hence

C ′
ij =

n∑
k=1

AikBkj = Cij .

If i = n+ 1, the entire i-th row of A′ is 0, so C ′
ij = 0 for all j. If j > n, the

j-th column of B′ is 0, so C ′
ij = 0 for all i. Thus C ′ is equal to

C ′ =

(
C 0
0 0

)
,

which proves the proposition. □

Lemma 3.3. Strassen’s algorithm holds for 2× 2 matrices.

Proof. Let A =

(
a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
. We compute AB via

Strassen’s Algorithm, then simplify the result.

x1 = (a11 + a22)(b11 + b22)

x2 = (a21 + a22)b11

x3 = a11(b12 − b22)

x4 = a22(−b11 + b21)

x5 = (a11 + a12)b22

x6 = (−a11 + a21)(b11 + b12)

x7 = (a12 − a22)(b21 + b22).

AB =

(
x1 + x4 − x5 + x7 x3 + x5

x2 + x4 x1 + x3 − x2 + x6

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.



STRASSEN’S ALGORITHM 5

We can see that Strassen’s algorithm calculates the dot products between the
rows of A and columns of B just like standard matrix multiplication. Thus,
the algorithm holds for 2× 2 matrices. □

Proposition 3.4 (Block Multiplication). For any matrices, A and B, of size
2k×2k we can divide A and B into four smaller matrices, each of size n×n:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
.

Then the product AB can be calculated recursively as

AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
.

Proof. We compute the product AB entrywise. For 1 ≤ i, j ≤ 2n,

(AB)ij =

2n∑
ℓ=1

aiℓbℓj .

Consider four cases depending on whether i and j lie in the first or second
block of indices.

Case 1: 1 ≤ i, j ≤ n (upper–left block). Then the sum splits into two
parts:

(AB)ij =

n∑
ℓ=1

aiℓbℓj +

2n∑
ℓ=n+1

aiℓbℓj .

The first sum equals (A11B11)ij , and the second equals (A12B21)ij . Thus

(AB)ij = (A11B11 +A12B21)ij .

Case 2: 1 ≤ i ≤ n and n < j ≤ 2n (upper–right block). A similar
decomposition yields

(AB)ij = (A11B12 +A12B22)ij .

Case 3: n < i ≤ 2n and 1 ≤ j ≤ n (lower–left block). Again,

(AB)ij = (A21B11 +A22B21)ij .

Case 4: n < i, j ≤ 2n (lower–right block). We obtain

(AB)ij = (A21B12 +A22B22)ij .

Since matrix addition and multiplication in each block use only the ring
operations, all computations are valid. We can combine all four cases to
reconstruct the product matrix. □

Theorem 3.5. Strassen’s algorithm correctly computes AB for any n × n
matrices A and B.



6 MAXFIELD MA

Proof. By Lemma 3.3, Strassen’s algorithm is correct for the base case of
2 × 2 matrices. By Theorem 3.4, the recursive block formulation of matrix
multiplication is correct: if the algorithm correctly multiplies (m/2)× (m/2)
matrices, then it correctly multiplies m×m matrices.

Combining these statements, Strassen’s algorithm is correct for all m×m
matrices with m a power of 2, by induction on m using Lemma 3.3 and
Theorem 3.4. Since any n×n matrices can be padded to such an m×m size
without affecting the final product (by Theorem 3.1 and Theorem 3.2), the
algorithm also computes AB correctly for arbitrary n× n matrices. □

3.2. Time Complexity of Strassen’s Algorithm. From Section 2.1, we
can see that in the 2×2 core, Strassen’s Algorithm computes 7 products and
18 additions. To be more specific, when it is applied recursively, the algorithm
computes 7 (n/2×n/2) matrix products and 18 (n/2×n/2) matrix additions.
We can analyze the time complexity of Strassen’s Algorithm using the Master
Theorem [4]. For a problem of size n, we must solve 7 smaller problems of
size n/2 in addition to performing 18 additions. Notice that when adding
matrices, we simply add each element to its corresponding element in the 2nd

matrix. As there are
(
n
2

)2
elements in each sub-matrix, we perform a total

of O(n2) scalar additions. Let T (n) denote the time complexity of a problem
of size n. We can write:

T (n) = 7T
(n
2

)
+O(n2).

By applying Master Theorem [4] we get the runtime of our algorithm to be
O(nlog2 7) ≈ O(n2.81).

4. Practical Performance of Strassen’s Algorithm

Matrix multiplication is commonly found in scientific computing, computer
graphics, and machine learning, so even a minor improvement in matrix
multiplication can have a huge impact. Asymptotically, Strassen’s algorithm
improves the running time of multiplying two n × n matrices from O(n3)
to O(nlog2 7) ≈ O(n2.81). However, big-O notation hides constant factors.
In practice, the recursive form of Strassen’s algorithm performs surprisingly
poorly on realistic matrix sizes.

4.1. Why Pure Strassen is Slow in Practice. For very small matrices,
the disadvantage of Strassen is obvious. When n = 2,

• the standard dot-product formulation uses 8 scalar multiplications
and 4 additions (12 scalar operations), while

• Strassen’s scheme uses 7 scalar multiplications but requires 18 addi-
tions and subtractions (25 scalar operations).



STRASSEN’S ALGORITHM 7

Thus on the level of scalar operations, Strassen has a significantly larger
constant factor.

To demonstrate this effect, I implemented both algorithms in C1 (optimiz-
ing the code to the best of my ability). For each size n, we generate random
n×n matrices, pad them up to the next power of two (npad), and then bench-
mark both standard and Strassen multiplication on the same npad × npad

matrices over 100 trials2. Table 1 summarizes the results for several sizes.

n npad Standard avg (s) Pure Strassen avg (s) Factor
32 32 0.000069 0.000465 6.74
64 64 0.000556 0.003201 5.76

128 128 0.004267 0.022708 5.32
256 256 0.034772 0.160049 4.60
512 512 0.277440 1.122273 4.04

1000 1024 2.203858 7.839432 3.56
Table 1. Average running time of standard and pure
Strassen multiplication over 100 trials. Factor indicates slow-
down relative to standard multiplication.

I will refer to Strassen multiplication as pure strassen in contrast to hy-
brid strassen, which is introduced in the next section. Even for n = 1000
(padded to 1024), pure Strassen is about 3.6 times slower than the standard
algorithm, with an average speedup of roughly −256% (Strassen takes about
2.56 times longer than standard). This is roughly on par with what the theo-
retical constants suggest: while Strassen saves one matrix multiplication per
recursion level (7 instead of 8), it introduces a large number of extra matrix
additions and subtractions.

The small-n experiments make this extremely clear. For n = 32 and
n = 64, Strassen is between roughly 5 times and 7 times slower than the stan-
dard method. For these dimensions, the asymptotic advantage of O(n2.81) is
completely overwhelmed by constant factors.

4.2. Hybrid Strassen: Combining Recursive and Standard Multi-
plication [3]. In practice, high-performance implementations do not use
pure Strassen. Intuitively, Strassen is profitable only once submatrices are
large enough that saving one multiplication per level outweighs the cost of
all the extra additions and subtractions. Below that scale, it is often better

1I originally attempted this experiment in python but python is not very recursion
friendly. C provided better times overall, not to mention the further optimizations that
could be made regarding dynamic memory and pointers. My code can be found here:
https://github.com/mma2027/strassen

2All data was collected on my computer, runtime may be drastically different on different
computers but will most likely follow the same trend.

https://github.com/mma2027/strassen


8 MAXFIELD MA

to perform standard matrix multiplication. Even on a theoretical level, it
is apparent that for smaller dimensions, standard matrix multiplication runs
faster. On a practical level, the standard method runs even faster compared
to Strassen, because Strassen uses recursion which is resource intensive. It
repeatedly splits matrices into four blocks, performs computations and then
reassembles the original matrix. This requires a computer to create many dif-
ferent matrices and manipulate them which requires extra time and memory,
both of which affect the duration the algorithm takes to physically run. The
standard method eliminates all of these factors by avoiding recursion and
only modifying one matrix. Therefore, Strassen is only advantageous when
time reduction is able to outweigh both the theoretical runtime advantage
and the practical runtime advantage of the standard method.

This observation—that Strassen’s asymptotic improvement only becomes
beneficial beyond a certain problem size and that a cutoff should be used in
practice—is a central conclusion of Huss-Lederman et al. [3].

However, we can design a combination of standard methods of matrix
multiplications with Strassen to form a hybrid method [5]:

Recurse using Strassen while n is above some threshold T ,
and once n ≤ T , switch to the standard O(n3) matrix multi-
plication on the subblocks.

To find a good threshold T on my machine, I implemented a trial and error
autotuning algorithm. For a fixed matrix size n, we:

(1) pad to npad,
(2) fix random matrices A and B,
(3) try hybrid Strassen with thresholds T ∈ {1, 2, 4, 8, . . . , npad},
(4) measure the average time for each T , and
(5) select the threshold with the smallest average time.

Table 2 shows the autotuned thresholds and the resulting speedups of
hybrid Strassen over standard multiplication for three representative sizes.

n npad Best T Standard avg (s) Hybrid Strassen avg (s) Speedup
32 32 32 0.000069 0.000050 1.38
64 64 32 0.000556 0.000377 1.47
128 128 32 0.004267 0.002413 1.77
256 256 32 0.034258 0.018326 1.87
512 512 16 0.278633 0.135234 2.06

1000 1024 32 2.211756 0.922053 2.40
Table 2. Autotuned hybrid Strassen thresholds and result-
ing average times over 100 trials. Speedup is relative to stan-
dard multiplication.

These results illustrate two important points:



REFERENCES 9

• Pure Strassen is a bad idea. Recursing all the way down (thresh-
old T = 1) is consistently slower than standard multiplication, often
by large factors, across all tested sizes. The extra recursive structure,
temporary matrices, and additions surpass the asymptotic savings.

• Hybrid Strassen is extremely effective with an appropriate
threshold. Once we stop recursing when submatrices reach a mod-
erate size (here between 16 and 32), Strassen’s asymptotic advantage
can really shine. The upper levels of the recursion tree reduce the
number of large matrix multiplications, while the lower levels are
handled by the more efficient standard method.

From an applications perspective, this means Strassen’s algorithm should
not be viewed as a substitution for standard matrix multiplication, but as a
tool for reducing the cost of large matrix multiplications.

References

[1] Markus Bläser. “Fast Matrix Multiplication”. In: Theory of Computing
Library — Graduate Surveys 5 (2013), pp. 1–60. doi: 10.4086/toc.gs.
2013.005.

[2] Shmuel Friedland. “Strassen’s Algorithm and the Asymptotic Complex-
ity of Matrix Multiplication”. In: The American Mathematical Monthly
102.10 (1995), pp. 894–903. doi: 10.1080/00029890.1995.12004600.

[3] Steven Huss-Lederman et al. “Implementation of Strassen’s Algorithm
for Matrix Multiplication”. In: Proceedings of the 1996 ACM/IEEE Con-
ference on Supercomputing (Supercomputing ’96). ACM/IEEE, 1996.
doi: 10.1145/369028.369096.

[4] Salvador Roura. “Improved Master Theorems for Divide-and-Conquer
Recurrences”. In: Journal of the ACM 48.2 (2001). Free PDF: https://
www.cs.upc.edu/~diaz/RouraMT.pdf (accessed 2025-12-18), pp. 170–
205. doi: 10.1145/375827.375837.

[5] Lorenzo De Stefani. “The I/O complexity of hybrid algorithms for square
matrix multiplication”. In: arXiv preprint arXiv:1904.12804 (2019). Preprint.

https://doi.org/10.4086/toc.gs.2013.005
https://doi.org/10.4086/toc.gs.2013.005
https://doi.org/10.1080/00029890.1995.12004600
https://doi.org/10.1145/369028.369096
https://www.cs.upc.edu/~diaz/RouraMT.pdf
https://www.cs.upc.edu/~diaz/RouraMT.pdf
https://doi.org/10.1145/375827.375837

	1. Introduction
	2. Strassen's Algorithm Blaeser2013
	2.1. Implementation to 2k 2k matrices.
	2.2. Padding

	3. Analysis of Strassen's Algorithm
	3.1. Correctness of Strassen's Algorithm
	3.2. Time Complexity of Strassen's Algorithm

	4. Practical Performance of Strassen's Algorithm
	4.1. Why Pure Strassen is Slow in Practice
	4.2. Hybrid Strassen: Combining Recursive and Standard Multiplication HussLederman1996

	References

